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Re-Engineering Legacy Cobol Programs 

J. K. Joiner W. T. Tsai 

Department of Computer Science Department of Computer Science 
US Air Force Academy University of Minnesota 

USAFA, CO 80840 Minneapolis, MN 55455 

Abstract—This paper proposes a semi-automatic two-step process to re-engineer legacy 

Cobol programs into OO programs including automatic identification of instance variables 

and methods from Cobol code followed by semi-automatic optimization of the OO design 

produced in the first step. We describe several issues related to automatic feature 

identification and report our experiences using two different automatic approaches on 

sample industrial code. Then we describe four ways to improve an OO design including 

moving methods from one class to another, merging methods, splitting methods, and 

merging classes. This is done by analyzing class interaction diagrams, call graphs, and 

code and presenting potential optimization points to programmers. 

1. Introduction 

Legacy software systems are programs that are critical to the operation of companies, 

but that were developed years ago using early programming languages such as Cobol and 

Fortran. These programs have been maintained for many years by hundreds of 

programmers, and while many changes have been made to the software, the supporting 

documentation may not be current. These factors contribute to the staggering cost of 

maintaining legacy systems. Consequently, there is an urgent need to find ways to make 

these programs more maintainable without disrupting the operation of the company [2, 15, 

3, 10]. One approach the Cobol software industry is considering is re-engineering their 

legacy systems into OO programs. In our contact with the Cobol software industry, we 

found the push to convert existing Cobol programs into OO programs coming both from 

within and outside the companies. Several software managers indicated to us that they 

receive frequent requests from their customers to convert legacy Cobol programs into OO 

programs. 

Object-oriented (OO) design and programming are enjoying considerable popularity 

these days and much is being written about the benefits of using OO techniques on 

software development processes, including benefits for software maintenance [7, 5, 13, 

16,14,11,9]. While new software development can proceed from the ground up using the 

new techniques, legacy systems that were developed using an old style are more difficult to 



incorporate the new software development ideas. Comparing the characteristics of Cobol 

programs and 00 programs, we find a wide gap between the two. The lack of local 

variables in Cobol means that the granularity of encapsulation is the entire program. In OO 

programs, variables can be encapsulated at the method and class level. The inability to pass 

parameters to called procedures in Cobol limits their generality and makes the entire 

program the unit of modularity. In OO programs methods and procedures are fully general 

and the class is the unit of modularity. Closing the gap between Cobol programs and OO 

programs is manageable if smaller steps are taken, therefore we propose a two-stage 

process here similar to one we used to identify instance variables and methods in legacy 

Fortran programs [15]. 

The first phase is automatic and involves the identification of instance variables and 

methods from the existing Cobol program using static program analyses such as data flow 

analysis [1], control flow analysis [8] and variable classification [3, 10]. Our approach to 

finding instance variables and methods in Cobol programs begins by constructing a data- 

centered dependence model of the program [10]. This model stores define and use 

information for each variable and call and called-by information for each paragraph. We 

then visit each paragraph and determine whether it should become a method, and if so, 

what class it should be attached to. This approach interleaves method and class 

identification, since new classes are created on the fly as methods are identified. When a 

paragraph is chosen to be a method, it is associated with a class at that time. If the class 

does not already exist, it is created with instance variables from the variables used in the 

method. The output of this step is a complete OO design consisting of classes with instance 

variables and methods. Next, we analyze the OO design in an attempt to improve and 

optimize it. We have identified four strategies for conducting this optimization step: (1) 

merging methods that cooperate in idioms, (2) removing cycles from the class interaction 

diagram, (3) merging smaller classes, and (4) splitting large methods into smaller ones. 

Finally, the Cobol code can be translated into an 00 program based on the OO design 

developed so far. The complete re-engineering process is summarized in Fig. 1. 



High-level process steps Low-level process steps 
1. Identify instance variables and methods 
from existing variables and paragraphs 
and compose into an 00 design 

a) Use control flow analysis, data flow 
analysis and variable classification to 
partition existing paragraphs as methods, 
b) allocate existing variables as instance 
variables 

2. Optimize the generated 00 design a) Merge cooperating methods, b) eliminate 
cycles in the class interaction diagram, c) 
merge small classes, d) split large methods 

3. Translate existing code assets into an 
object oriented program (in C++ for 
example) 

a) Compute parameter lists for methods, b) 
translate legacy variables into 00 
instance variables, c) translate legacy code 
into 00 methods 

Fig. 1 Summary of a Cobol re-engineering process 

The most crucial and difficult aspect of the process is instance variable and method 
identification because of the desire to create a good OO design. Although we can optimize 

an OO design to a degree after identifying an initial set of classes, the original Cobol 

program structure greatly influences the quality of the generated OO design because we 
identify instance variables and methods from the existing Cobol program. For this reason, 
we first studied the characteristics of sample legacy programs from industry and report the 

results in Section 2. In Section 3, we discuss some important issues related to semi- 

automatic re-engineering of legacy systems. In Section 4, we discuss feature identification 
algorithms and present the results of experiments using two different identification 
algorithms on sample industrial Cobol programs. In Section 5, we present our work on 
optimizing OO designs derived from Cobol programs using our algorithms. 

2. Characteristics of legacy Cobol programs 

Despite sizes of up to millions of lines of code, most legacy Cobol programs we 

encountered from industry were reasonably well structured with mature data divisions and 
numerous small cohesive paragraphs. To quantify these characteristics, we randomly 

selected portions of huge industrial programs that were being maintained by hundreds of 
programmers at their maintenance sites and studied them. Our software comprises ten 

programs totaling 13,522 lines of code, 6,489 variables and 355 paragraphs. To 

understand the data structures used in legacy programs, we counted the number of 

variables (V) and the number of top-level1 variables (T) in our sample programs. We then 

!We define a top-level variable to be a 01- or 77-level data item declared in the data division. 



computed the average number of fields per top-level item (V / T). The data showed that the 

programs define an average of 649 variables each, but these are organized in an average of 

just 29 top-level variables with 22 fields each on average. Because of the number and 

average size of the top-level variables encountered in our sample programs, we conclude 

that top-level variables are reasonable candidates for becoming instance variables. 

To understand the code structures used in legacy programs, we counted the number of 

source lines (L) and the number of paragraphs (P). We then computed the lines per 

paragraph (L/P). We found on average each program contains 36 paragraphs of 

approximately 14 lines each. The small average size of existing paragraphs hints that many 

of them may become methods of classes without further splitting or modification. 

Next we were interested in how variables were used in the programs. We found that 

42% of the paragraphs defined exactly one variable and 85% of the paragraphs defined 

three or less variables. This statistic is one more sign that existing paragraphs make good 

candidates for becoming methods because of the small number of variables being defined in 

them. 

Finally, we found few 'messy' constructs such as fall-throughs (execution in one 

paragraph 'falls-through' into the next without a return), ALTER sentences (self-modifying 

code) or GOTO sentences used in the programs. Standard high-level database interface 

languages, such as SQL, are often used enhancing portability with the re-engineered 

programs. Based on our study of legacy Cobol programs, we made the following 

conclusions regarding re-engineering legacy programs into OO programs: 

1. Automatic re-engineering tools are essential due to the size of the Cobol 

programs needing to be re-engineered. 

2. Individual Cobol programs can be re-engineered one-at-a-time since Cobol 

applications are constructed of many 'small' programs. 

3. Existing record variables make good candidates for instance variables since 

many represent the state of entities in the application domain. 

4. Existing paragraphs make good candidates for methods since they are 

generally small and define few variables. 

5. Minimal 'hand' re-engineering is needed because the programs use few 

messy constructs such as GOTOS, ALTERS or fall-throughs. 



3. Issues in semi-automatic re-engineering 

The most interesting and crucial aspect of this Cobol re-engineering approach involves 

the problem of identifying instance variables and methods in the existing Cobol program 

since these will be used to construct classes in the OO design. A well-designed class should 

contain a coherent set of instance variables and methods that carry out the operations on the 

state of the instance variables, and the quality of the OO design greatly influences the 

understandability and maintainability of the entire system. Since we are interested in re- 

engineering legacy systems that are in continuous use in their domains, our approach is to 

identify instance variables and methods from the existing assets in the Cobol program and 

then compose them into an OO design. We identified the following issues related to our 

approach: 

• How do we classify and study the algorithms that are used to identify 

reusable features in the existing program? 

• How do we evaluate the OO design generated by a given algorithm? 

• How do we assure the equivalence of the original Cobol program and the 

new OO program? 

3.1  Classifying feature identification algorithms 

The algorithms used to examine paragraphs and determine their suitability as methods 

can be classified according to the types of analyses used and the weights put on each of the 

analyses. Three types of static program analyses can be used in the algorithms: (1) data 

flow analysis that reports the variables a paragraph defines and uses, (2) control flow 

analysis that reports the static calling hierarchy that exists in the code, and (3) variable 

classification that reports the categories of the variables in the program. Data flow analysis 

can be used to identify and rank the variables referenced in a paragraph according to the 

number of places it is referenced. Control flow analysis can be used to provide an order of 

visiting paragraphs and to make sure that paragraphs called by one paragraph are all 

assigned to the same class as the calling paragraph. Finally, variable classification can be 

used to pick only 'important' variables, such as domain or linkage variables, as instance 

variables of classes and not pick program variables such as scalars2 to be the basis of 

classes. These three types of program analyses can be combined in a number of ways to 

guide the identification of instance variables and methods. This approach gives a taxonomy 

Scalars are individual, single-valued variables such as numbers and strings. They are contrasted with 
records and arrays which have multiple fields in a structured layout. 



of feature identification algorithms consisting of single analysis approaches, two analysis 

approaches and three analysis approaches. 

3.2 Evaluating OO designs 

Next, the OO design generated by the automatic algorithm must be evaluated. The 

primary goal of the identification process is to create well-behaved classes that are useful 

for application designers and easy to maintain. One evaluation criteria for OO designs is 

Demeter's Law [12]. It advocates: (1) creating classes that do not rely on the internal 

structure of any other class, and (2) creating classes that do not send messages to a large 

number of other classes. Provision (1) can be satisfied by ensuring that methods only 

access instance variables of their own class. This includes the stipulation that a class not 

access the instance variables of its superclasses in an inheritance hierarchy. The solution for 

provision (2) as suggested by Lieberherr is to allow methods to send messages to classes 

of other instance variables or parameters of the method only. Following Demeter's Law 

does not guarantee a good OO design, but not following it probably makes an OO program 

harder to maintain. Enforcing Demeter's Law is mainly up to the programmer—the 

visibility of instance variables is an option in some OO programming languages and 

restricting messages to parameters is also under programmer control. We can recommend 

these details in an OO design, but the final decisions are made at implementation time. 

Another way to evaluate an OO design is to compare the number of messages required to 

accomplish typical processing tasks. We cannot count or predict the actual number of 

messages sent at runtime, but we can compare the relative number of messages required by 

two designs for the same task. Consider a method that updates a counter. It must get the 

original value of the counter, add the increment, and store the new value. If the counter is 

an instance variable in the same class as the method, no messages need to be sent, but if it 

is in another class, two messages are required: one to get the original value and one to set 

the new value. In this example, we can say that one design saves two messages over the 

other. We can extend this analysis over the entire OO design and come up with a net 

number of messages saved between two designs. 

Next, we can evaluate an OO design in terms of the class interactions involved. To 

facilitate this analysis, we can construct a class interaction diagram [See Fig. 2] such that an 

arrow from one class to another indicates that the latter class requests services from the 

former. In other words, the arrow depicts the 'flow' of services from a 'source' class to a 

'sink' class. Using class interaction diagrams, we can compare two OO designs and 

compute statistics on the number and types of interactions among classes. Although 

Demeter's Law says to keep the number of class interactions low, it does not recommend a 



Class interaction diagram without cycles. 
Information flows are easy to see from top to 
bottom of the diagram. 

C 

%^ 

Interaction diagram containing same 
number of classes and interactions, but 
with cycles. Hard to trace information 
flows. 

Fig. 2 Comparing class interaction diagrams and cycles 

specific number. Recently, Chidamber and Kemerer [4] reported seeing median values of 

less than 10 interactions with other classes, plus they saw that 50% of a systems classes 

were self-contained and did not reference any other classes. We take these numbers as 

goals to achieve in an OO design. 

Another statistic that can be derived from a class interaction diagram is the number of 

cycles among interacting classes. We believe that cycles in interaction diagrams complicate 

them and make understanding difficult, even though they are 'legal' in an OO design. 

Compare the class interaction diagrams in Fig. 2. They each contain the same number of 

classes and interactions, but the one on the left without cycles is easier to comprehend than 

the one on the right because the information flow and class dependence of the process 

depicted on the left is easier to understand. 

Finally, OO designs can be evaluated based on the types of variables chosen for classes. 

Classes should be predominantly based on important variables from the application domain 

and methods should be chosen to provide a coherent set of required behaviors on the state 

of the instance variables. Our data-centered program understanding tools provide automatic 

variable classification into categories such as domain and program variables [3, 10]. The 

results of an automatic class identification algorithm can be compared with the automatic 

variable classification and conclusions drawn about the OO design. We believe that most 



domain variables should become classes while some program variables may become 

classes. Also, we need to be alert for domain variables that are missed during analysis of 

the Cobol program. 

3.3 How to assure the equivalence of the original program and 
the re-engineered 00 program 

An extremely critical issue for organizations re-engineering legacy systems is how to 

assure that the re-engineered systems are equivalent to the systems they will be replacing. 

In the approach we propose for re-engineering legacy Cobol programs, we derive the OO 

design exclusively from the existing code. Due to this, we propose a systematic process of 

code inspections that compare the new 00 code to the original Cobol code to assure the 

equivalence between the original and re-engineered programs. Our confidence in code 

inspection was recently confirmed by Davis, who claims inspection can find as many as 82 

percent of all errors [6]. The inspection process we propose consists of three steps. The 

first step is to trace every variable in the original Cobol program to the OO program. 

Because we base our OO design on the existing variables, we can find every existing 

variable somewhere in the new program. Some will be instance variables in classes, some 

will be local variables in methods or procedures, and some will be global variables. Next 

we can trace every operation in the original Cobol program to the 00 program. We 

implement the OO methods and procedures from the original Cobol code, so we can find 

every operation somewhere in the new OO code. Some operations will be in methods, 

some will be in procedures, some will be incorporated in new selection or iteration 

statements that have been hand optimized to take advantage of new programming language 

features. Finally, we can trace every procedure call from the original Cobol program to the 

OO program. Again, because we produce the OO implementation directly from the Cobol 

implementation, we can find every transfer of control in the new system. Some will be 

implemented as messages, some will be implemented as procedure calls, and some will be 

implemented as inline code in methods or procedures. One way to check this is to compare 

the original Cobol call graph with the new OO message sequence graph. These two graphs 

should match indicating that all of the transfers of control are accounted for. By verifying 

these three features through inspection, we can be reasonably sure that the functionality of 

the original Cobol program is present in the new OO code. A prudent final step would 

involve running the test plan developed for the original code on the new one, but as Davis 

points out, code inspections find a significant number of errors, greatly reducing the cost of 

testing. 

8 



4. Automatic feature identification approaches 

We designed and implemented two partitioning algorithms and experimented with them 

on our sample industrial programs. The first algorithm uses control flow analysis and data 

flow analysis to identify instance variables and methods. The rationale for this algorithm 

came from studying the call graphs of Cobol programs and observing several instances 

where small numbers of paragraphs cooperated in the processing tasks. These cooperating 

paragraphs showed up in clusters in the call graph where one paragraph was called by one 

or more 'clients' and the rest were always called in the same sequence by the same small 

number of paragraphs within the cluster. We reasoned that these clusters of paragraphs 

should probably be assigned to the same class because they were cooperating in the 

processing tasks. A good way to make this happen is to use the call graph relationships to 

assign methods to classes. 

After studying the OO designs produced by the first algorithm, we saw some 

undesirable features such as basing classes on individual scalar variables and extra 

messages needed to set instance variable values. To correct these deficiencies, we designed 

a second algorithm using variable classification and data flow analysis. Variable 

classification is used to filter scalars and only consider records to become the basis of a 

class. Then data flow analysis is used to pick the record variable that is referenced the most 

in the paragraph. The rationale is that messaging will be reduced if we make a paragraph a 

method of the variables it references the most since the instance variables referenced by a 

method are directly available without requiring extra messages. 

Based on our experiments, we believe that a combination of data flow analysis, control 

flow analysis and variable classification should be used in any algorithm, and that some 

optimization will still be required after identifying the initial OO design using any 

algorithm. We now describe both of the algorithms in detail followed by an evaluation of 

the OO designs produced by both. 

4.1 A control flow based algorithm 

The objective of the control flow algorithm is to assign paragraphs clustered in the call 

graph to the same class. The approach is to visit the paragraphs in breadth-first top-down 

order and assign a paragraph to the same class as its parent in the call graph if that 

paragraph references the same variables. If the paragraph does not reference the same 

variables as its parent, then we try to find a common variable referenced by its siblings and 

create a new class from that variable. 



G PREPARE-TUITION-REPORT 

(READ-STUDENT-FILE Y (PROCESS-A-RECORD) ^WRITE-UNIVERSITY-TOTALSj 

COMPUTE-INDIVIOUAL-BILL a INCREMENT-ALL-TOTALS ; WRITE-DET AIL-LINE D READ-STUDENT-FILE 

NOTE: All the methods inside the dashed border are assigned to the same class. 

Fig. 3 Call graph for tuition program 

To evaluate this algorithm, we used a textbook Cobol program that computes college 

tuition amounts [See the call graph in Fig. 3]. We focus on the four paragraphs called by 

PROCESS-A-RECORD. Because PROCESS-A-RECORD does not use or define any variables, 

it is not assigned to a class, so the algorithm looks for a common variable referenced by the 

four siblings called by it. It finds STUDENT-RECORD and assigns the four paragraphs to 

that class. The resulting class diagram in Fig. 4 shows that several methods in class 

STUDENT-RECORD must use 'get-' and 'set-' methods from classes INDIVIDUAL- 

CALCULATIONS and UNIVERSITY-TOTALS because they reference instance variables in 

those classes. In Fig. 4, an arrow from one method to another means the first method 

sends a message to the second method to request its services. Also, method names 

beginning with 'get-' and 'set-' provide access to private instance variables of the classes. 

We guessed we might be able to reduce the number of messages using a different OO 

design and developed a second algorithm for that purpose. 

10 



Class student-record 

write-detail-line 
increment-all-totals 
compute-individual-bill 
read-student-file 

get-stu-name 
get-stu-soc-sec-no 
get-stu-credits 
get-stu-union-member 
get-stu-scholarship 

Class individual-calculations 

set-stu-name 
set-stu-soc-sec-no 
set-stu-credits 
set-stu-union-member 
set-stu-scholarship 

get-ind-tuition 
get-ind-activity-fee 
get-ind-union-fee 
get-ind-bill 

set-ind-tuition 
set-ind-activity-fee 
set-ind-union-fee 
set-ind-bill 

Class university-totals 

get-total-tuition 
get-total-scholarship 
get-total-activity-fee 
get-total-ind-bill 
get-total-union-fee 

set-total-tuition 
set-total-scholarship 
set-total-activity-fee 
set-total-ind-bill 
set-total-union-fee 

Class total-line 

write-university-totals 

Fig. 4 Tuition class diagram using control flow algorithm 

4.2 A data flow based algorithm 

We made two observations concerning the OO designs produced by the control flow 
based algorithm: (1) some classes were based on single scalar variables as instance 

variables instead of record variables, and (2) extra messages were needed to access instance 

variables because methods referenced instance variables other than those of their own 

classes. To fix the problem with item (1), we used variable classification to consider only 

record variables as instance variables of classes. To fix the problem with item (2), we used 

data flow analysis to assign a paragraph to the record variable it referenced the most. This 

approach could reduce the number of messages in the program and create classes with more 

instance variables. Fig. 5 shows the updated class diagram for the tuition program using 

the second algorithm. We see all methods that define instance variables have been assigned 

to the classes of those instance variables. For example method INCREMENT-ALL-TOTALS is 

assigned to class UNIVERSITY-TOTALS. This resulted in no requirement to use 'set-' 

11 



methods saving 21 messages (in a static analysis) when compared to the class diagram for 
the tuition program in Fig. 4 using the control flow algorithm. 

Class student-record 

read-student-file 

get-stu-name 
get-stu-soc-sec-no 
get-stu-credits 
get-stu-union-member 
get-stu-scholarship 

set-stu-name 
set-stu-soc-sec-no 
set-stu-credlts 
set-stu-union-member 
set-stu-scholarship 

Class detail-line 

write-detail-line 

Class university-totals 

increment-all-totals 

get-total-tuition 
get-total-scholarship - 
get-total-activity-fee - 
get-total-ind-blll 
get-total-union-fee 

write-university-totals 

set-total-tultlon 
set-total-scholarship 
set-total-activity-fee 
set-total-ind-bill 
set-total-union-fee 

compute-individual-bill 

. get-lnd-tuition 
- get-ind-activity-fee 
-get-lnd-unlon-fee 
-get-lnd-bill 

set-ind-tuition 
set-ind-activity-fee 
set-ind-union-fee 
set-ind-bill 

Fig. 5 Tuition class diagram using data flow algorithm 

4.3 Evaluation using industrial programs 

We also ran both algorithms and produced 00 designs for the ten industrial programs 

described in Section 2. Both algorithms produced OO designs following the guidelines of 
Demeter's Law but we found differences between the algorithms in terms of the number of 

classes and methods identified and the number of class interactions involved. The control 

flow algorithm picked fewer classes than the data flow algorithm (80 versus 97) because it 

favors assigning new methods to existing classes rather than creating new classes for them. 

We next evaluated the average number of class interactions in the two OO designs and 

found that the classes in the control flow based design interacted with approximately 3 ± 2 

additional classes on average while the classes in the data flow based algorithm interacted 

12 



with only 2 + 2 classes. Additionally, we found that 7 of 26 classes (27%) in the control 
flow design needed interactions with more than 3 other classes, while in the data flow 

design only 4 of 27 classes (15%) needed that many additional interactions. Thus, the OO 

design produced by the data-flow algorithm reduced the coupling between classes 

compared to the design produced by the control-flow algorithm. 

5. Optimizing an OO design 

After identifying instance variables and methods using an automatic algorithm, the OO 

design should be evaluated and possible optimizations explored. We have identified three 

areas to look for possible improvement: improving the messaging behavior, improving the 

class interaction graph, and reducing the number of classes, instance variables and 

methods. Improving messaging involves reducing the number of messages needed to 

accomplish program tasks. This can be accomplished by moving a method from one class 

to another to take advantage of direct access to instance variables needed by the method, 

splitting large methods to reduce the number of classes involved, or possibly merging 

classes to bring instance variables into the class where they are used. Improving the class 

interaction graph involves eliminating cycles in class interactions and reducing the number 

of classes in the graph. This can be accomplished by moving a method from one class to 

another or by merging classes. Reducing the number of classes, methods, and instance 

variables reduces the complexity of the OO design and simplifies its understandability and 
maintenance. 

The optimization of an OO design involves making decisions and tradeoffs, and a good 

deal of experience is needed to do it well. We cannot give an algorithm, but many of the 

optimizations depend on the following four basic modifications to the OO design: (1) 

merging two or more methods into one, (2) moving a method from one class to another, 

(3) splitting large or complex methods into two or more smaller methods, and (4) merging 

two or more classes into one. These techniques can be used by themselves or in 

combination to improve an OO design. We now examine each of these techniques and give 
some examples to help build experience in using them. 

5.1 Merging methods 

Merging methods can reduce the complexity of an OO design and improve runtime 

performance by reducing the number of messages required. Many looping activities in 

Cobol require the use of multiple paragraphs because the language does not contain 

sequencing constructs such as FOR, WHILE, or REPEAT. Idioms developed to handle these 

common sequencing tasks are constructed of multiple paragraphs using the PERFORM- 
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UNTIL statement. For example, to iterate through a one-dimensional array, two paragraphs 

are needed: the first paragraph initializes the array index and then performs the second 

paragraph a fixed number of times. The second paragraph increments the index and 

processes one array element at a time. This idiom is illustrated in Fig. 6. 

Pi. 

P2. 

MOVE 0 TO INDEX-1. 
PERFORM P2 100 TIMES. 

ADD 1 TO INDEX-1. 
MOVE ZERO TO MY-ARRAY(INDEX-1, 

Fig. 6 A Cobol looping idiom 

A method identification algorithm based on identifying existing Cobol paragraphs will 

create two methods from this type of idiomatic construct. We developed an algorithm that 

finds these idiomatic clusters in programs and shows them to a programmer for 

optimization. The algorithm [See Fig. 7] uses control-flow analysis to find paragraphs that 

potentially cooperate in sequencing activities. 

1. Find a paragraph that calls exactly zero paragraphs and is called by 

exactly one paragraph. This is the potential 'end point' in a cluster. 

2. Repeatedly go up the called-by chain for this paragraph until finding a 

paragraph that is called by more than one other paragraph or calls more than 

one other paragraph. This paragraph is the potential 'entry point' into the 

cluster and all intermediate paragraphs are members of the cluster.  

Fig. 7 A cluster identification algorithm 

In addition to identifying paragraphs participating in sequencing idioms, we provide a 

list of shared variables, such as INDEX-1 in Fig. 6, that may participate in the idiom. This 

can help the programmer identify possible temporary or local variables in the optimized 

method. Depending on the method identification algorithm used, the paragraphs in 

idiomatic clusters may be in separate classes. In this case, they should all be moved to the 

same class before attempting to merge them [We discuss heuristics for moving methods in 

Section 5.3]. To evaluate the impact of merging methods in an OO design, we 

experimented on the automatically generated OO design for a typical batch data processing 

application consisting of 83 paragraphs. Results of the automatic cluster analysis on this 

industrial Cobol program identified 21 potential clusters involving 46 of the 83 paragraphs. 
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Fig. 8 An excerpt from a class interaction diagram 

After examining each potential cluster by hand, only 11 of the 21 clusters were suitable for 

merging into single methods. Some reasons why others were not suitable included 

paragraphs that were performed just once, paragraphs that were called from multiple 

locations in a paragraph, and cases where there were no shared variables between the 

paragraphs. By merging the 11 clusters, we were able to reduce the paragraph count in the 

program by 17 to 66. 

5.2 Analysis of the class interaction diagram 

To further assess the OO design in the same sample industrial Cobol program, we 

constructed a class interaction diagram drawing an edge when a method from one class 

called a method from another class. Fig. 8 contains an excerpt of this class interaction 

diagram focusing on the classes involved in producing values of INVENTORY-REC-OUT. 

Classes in bold such as DATE-REC, ACCUM-021-IN, F709-REC-IN, and INVENTORY-REC- 

IN can be considered input classes because they supply services to other classes without 

using any themselves, and classes such as INVENTORY-REC-OUT can be considered output 

classes because they receive services from other classes but do not provide any. 
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On average each of the classes in the program interacted with 2 ± 2 other classes, which 

is good. However, we noticed that there were 10 instances when there was a direct cycle 

between two classes. In these cases one method in each of two classes called another 

method in the opposite class creating a direct cycle. Cycles are legal, but complicate the 

understanding of OO programs because class relationships are harder to visualize when 

there are cycles [See Section 3.2]. If classes can be arranged in a diagram with all 

interaction arrows flowing consistently in one direction from program input classes to 

program output classes, it is easy to visualize the roles of the classes as well as the high- 

level sequencing of the processing in the program. For example, there are no direct cycles 

in Fig. 8 and it is easy to trace the flow of information from the input classes to the output 

class in this diagram. The ability to visualize the relationships of major entities in a program 

is helpful in understanding it and maintaining it. Therefore we are interested in breaking 

cycles in the class interaction diagram. 

To break these cycles, we developed two strategies: (1) try to move one or more 

methods involved in the cycle from one class to the other [See Fig. 9], or (2) try to merge 

the classes involved in the cycle into a single class. We first find the methods involved in a 

cycle and then use additional analysis to decide if a method should be moved to another 

class or whether the classes should be merged. 

Class One 

method-one(...) 

Class Two 

-^-  method-two(...) 

Before restructuring, these two classes share a cycle of interaction: 
method-one needs the services of class two and method-two needs the 
services of class one. In addition, each uses services of its own class. 

Class One 

method-one(...)- 

method-two(...)- 

Class Two 

After restructuring, the cycle is broken. 

Fig. 9 Breaking a class dependence cycle by moving a method 
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5.3 Moving a method from one class to another 

In our study, we discovered two heuristics that can be used to decide whether to move a 

method from one class to another and if so, which one to move. Both heuristics are based 

on control flow analysis and attempt to move methods to or keep methods in the same class 

as other methods they call or are called by. The first heuristic addresses the issue of which 

method to move and says, "move the method that calls or is called by other methods in the 

class being moved to." The reason for this is further restructuring of the methods in a class 

is easier when methods from the same class call each other than call methods in other 

classes. This heuristic can be implemented by checking the other class methods called by 

both methods in the cycle and moving the one that calls other methods from the class 

involved in the cycle. 

The second heuristic addresses the issue of which method not to move and says, "keep a 

method in a class if it calls or is called by other methods in that class." Again, the call graph 

can be used to show this, especially if the call graph is annotated with the class a paragraph 

is assigned to. Furthermore, a quick scan of the paragraph code can confirm its role with 

other paragraphs in the class. By looking at call graphs and paragraph code, a programmer 

can decide which of two methods should be moved to the opposite class in a cycle to break 

it. 

5.4 Merging two classes into one 

Another strategy we identified in trying to break cycles in the class interaction graph was 

to merge the classes involved in the cycle into one class. This breaks the cycle by bringing 

all the instance variables and methods into the same class, eliminating the need to use 

messages to access the instance variables. To be suitable for merging, a class should have a 

small number of instance variables and methods (less than 10), and it should not have 

interactions with a large number of other classes (more than 2 or 3). In case there is a 

difference in sizes, merge the smaller class into the larger one. In the industrial program we 

have been studying, two of the original ten cycles were eliminated by merging the four 

classes involved. 

Later we discovered several cases where we could merge classes that were not involved 

in cycles simply to reduce the number of classes in the design making it easier to 

understand and maintain. We used the same size criteria to find candidate classes for 

merging and looked for cases where one small class had an interaction with only one other 

class. In the sample industrial program we tested, we found an additional ten classes that 

could be merged, reducing the original 27 classes in the 00 design to only 13. 
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5.5 Splitting large methods 

A final class optimization strategy we discovered involves looking for 'large' methods 

either in terms of lines of code or in terms of the number of other class variables used. Our 

criteria for these conditions is: greater than sixty lines of code (one page worth of listing) or 

greater than two-three class variables involved in addition to the parent class. After finding 

a candidate method for splitting, an analysis of the code is required to determine if the 

method really should be split. In the sample application we examined, we found two 

candidates for splitting based on the number of interacting classes criteria—each of the 

methods interacted with 4 or more other classes—even though the lines of code were less 

than the one page limit. In examining the code, however, we only found one of the 

methods that really could benefit from splitting. This method consisted of 38 lines of code 

and interacted with 4 other classes. After splitting, one new method had 16 lines of code 

and interacted with 1 other class, and the other had 22 lines of code and interacted with 3 

other classes. A code inspection will readily find the appropriate place to split a method or 

will show that the method should not be split. The point of a split will be in a straight-line 

section of the code and will not be in the middle of a loop or other logical block of code. A 

method that contains complex or cascaded selection statements (IFs) will probably not be 

amenable to splitting. ■■ 

6. Conclusion 

In exploring algorithms that identify instance variables and methods in existing code, we 

discovered that variable classification and data flow analysis should play the major role to 

keep the relative number of messages small. Without an input from data flow analysis, a 

paragraph may be assigned to a class that requires it to send many messages to other 

classes, and we showed how 21 messages were saved in two designs of a small program 

for computing tuition amounts using a data-flow analysis approach. Variable classification 

can limit the pool of existing variables in the program from which classes are created and 

force the algorithm to create classes only from 'important' variables. No matter how 

sophisticated an algorithm is, though, it is unlikely that a completely desirable OO design 

will be produced automatically. Some of the undesirable characteristics that need to be 

corrected include: classes with too few instance variables and methods, classes with too 

many interactions with other classes, classes with cycles of interactions with other classes, 

and too many small methods. Many of these characteristics are the result of Cobol idioms 

developed to work around deficiencies in Cobol itself. These can be optimized in an OO 

design if a programmer knows what to look for. We identified four strategies for 
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improving an OO design and developed algorithms to analyze OO designs and recognize 

some of these symptoms. 
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